作者: Didi Sun, Yuejiao Li, Wenqiang Zhao, Ziliang Zhang, Dandan Li, Chunzhang Zhao, Qing Liu
Abstract: Soil microbial communities are primarily regulated by environmental temperature. Our study investigated the effects of global warming on soil microbial community composition as measured via phospholipid fatty acid (PLFA) analysis and soil chemical characteristics in relation to soil depth in a dragon spruce plantation and a spruce-fir-dominated natural forest in the Eastern Tibetan Plateau. Open-top chambers were utilized to increase the soil and air temperature. Soil samples were collected from the 0-10 cm, 10-20 cm, and 20-30 cm layers after a 4-year warming. Our results showed that the soil microbial community and the contents of TC (Total carbon), TN(Total nitrogen), NO3-, andNH4+ responded differently to warming in the two contrasting forests, especially at the 0-10 cm soil depth. Warming increased soil microbial biomass at the 0-20 cm depth of soil in natural forest but reduced it at the 0-10 cm depth of soil in the plantation. In contrast, the TC and TN contents were reduced in most soil layers of a natural forest but increased in all of the soil layers of the plantation under warming conditions. This result suggested that the effects of warming on soil microbial community and soil C and N pools would differ according to soil depth and forest types; thus, the two contrasting forests would under go differing changes following the future climate warming in this region.
Keywords: Microbial biomass, Microbial community, Phospholipid fatty acid (PLFA), Eastern
DOI: 10.1007/s11629-015-3733-1
版权所有:生态安全与保护四川省重点实验室 | 绵阳师范学院
地址:四川省绵阳市高新区绵兴西路166号 | 邮箱:mszxst@163.com
电话:0816-2579941 | 传真:0816-2579941