保护生态环境,维护生态安全
Protect ecological environment and maintain ecological security
保护生态环境,维护生态安全
Protect ecological environment and maintain ecological security
保护生态环境,维护生态安全
Protect ecological environment and maintain ecological security
保护生态环境,维护生态安全
Protect ecological environment and maintain ecological security
科研成果

首页 >> 科学研究 >> 科研成果 >> 学术论文 >> 2020 >> 正文

Altitudinal pattern of shrub biomass allocation in Southwest China
2023-03-20  |  点击:[]

作者: Mei Liu, Dandan Li, Jun Hu, Dongyan Liu, Zhiliang Ma, Xinying Cheng, Chunzhang Zhao, Qing Liu

Abstract: Shrubs play an important role in the global carbon cycle and are particularly sensitive to climate change. However, the altitudinal pattern of biomass allocation in mountainous shrubs and its responses to climate change are still unclear. In this study, biomass accumulation and allocation of the shrub community and their relationships with climatic factors were investigated in 331 sampling sites along an extensive altitudinal gradient (311-4911 m) in Southwest China. The results showed that the above-ground biomass (AGB) and the total biomass (TB) of the shrub community decreased quadratically (R2 = 0.107) and linearly (R2 = 0.024) from 9.86 to 0.15 kg·m-2 and 15.61 to 0.26 kg·m-2 with increasing altitude, respectively. However, the below-ground biomass (BGB) and TB of the herb layer increased quadratically with increasing altitudes (R2 = 0.136 and 0.122, respectively. P<0.001). The root/shoot ratio (R/S) of the community and its component synusiae increased gradually with increasing altitudes (P<0.001). The standardized major axis (SMA) indicated an isometric relationship between AGB and BGB for the whole shrub community, but allometric relationships were found for the shrub and herb layer. Redundancy analysis and Pearson correlation analysis showed that the biomass and R/S were significantly correlated with mean annual temperature (MAT), mean annual precipitation (MAP) and reconnaissance drought index (RDI). These findings indicate that shrub biomass allocation is strongly affected by the altitude, MAT and MAP and support the isometric relationship of AGB and BGB partitioning at the community level on mountainous shrub biomes.

Keywords: Shrubs; Biomass; Herbs; China; Grasslands; Ecosystems; Deserts; Tibetan Plateau

DOI: 10.1371/journal.pone.0240861


 

版权所有:生态安全与保护四川省重点实验室 | 绵阳师范学院
地址:四川省绵阳市高新区绵兴西路166号 | 邮箱:mszxst@163.com
电话:0816-2579941 | 传真:0816-2579941